AnalizyŚlepy zaułek cyfryzacji – czym jest i czy Twoja firma zmierza w jego stronę? > redakcja Opublikowane 17 września 20240 0 109 Podziel się Facebook Podziel się Twitter Podziel się Google+ Podziel się Reddit Podziel się Pinterest Podziel się Linkedin Podziel się Tumblr Przedsiębiorstwa na całym świecie są świadome korzyści oferowanych przez generatywną sztuczną inteligencję – już teraz z AI korzysta ok. 65 proc. z nich[1]. Otrzymywane przez firmy rezultaty mogą jednak znacznie się od siebie różnić. Jak zauważają eksperci firmy Progress, kluczem do skutecznego i efektywnego wdrożenia sztucznej inteligencji w obrębie przedsiębiorstwa jest zrozumienie jej zmiennej, dynamicznej natury. Firmy powinny odrzucić ideę długoterminowego, wieloetapowego planowania w kontekście AI. W przeciwnym razie grożą im m.in. zastój we wprowadzaniu innowacji oraz ryzyko zmarnowania posiadanych zasobów. Zalecaną strategią wdrażania AI w obrębie firmy jest zaś metodyka zwinna (agile).Zaplanowanie firmowej strategii w kontekście generatywnej sztucznej inteligencji nie jest łatwym zadaniem. Technologia ta została zaprojektowana tak, aby ewoluować i zmieniać się w zawrotnym, nienotowanym dotąd tempie. Mechanizmy te mają zdolność do samouczenia się, dzięki czemu każdy kolejny model Gen AI jest lepszy względem poprzednich generacji. Postępy generatywnej sztucznej inteligencji mogą być mierzone w miesiącach, tygodniach, dniach, a nawet minutach. Firmy muszą być tego świadome podczas tworzenia strategii obejmujących AI, aby nie ograniczyć się do korzystania z rozwiązań, które wkrótce staną się przestarzałe.Elastyczność – klucz do ciągłego doskonaleniaMetodyka zwinna to taktyka zarządzania projektami IT polegająca na podzieleniu procesu dostarczania oprogramowania na krótkie fazy, nazywane sprintami lub iteracjami. W okresie jednego sprintu, który przeważnie trwa około dwóch tygodni, zespół programistyczny ma do osiągnięcia kilka konkretnych celów, a jego członkowie regularnie naradzają się ze sobą w celu sprawdzenia postępów oraz omówienia ewentualnych trudności. Planowanie każdej iteracji wymaga regularnych retrospekcji pod kątem działania oprogramowania, co pozwala na identyfikowanie obszarów wymagających poprawy. Analogiczna taktyka sprawdza się także w kontekście wdrażania sztucznej inteligencji do struktur firmy.– Implementując AI do struktur przedsiębiorstwa, warto zacząć od stopniowych, niewielkich zmian w np. wewnętrznych procesach biznesowych. Podejście to gwarantuje większą elastyczność niż wieloetapowe plany skomplikowanych wdrożeń. Pozwala na dynamiczną ocenę otrzymywanych efektów, wprowadzanie modyfikacji oraz planowanie kolejnych kroków z uwzględnieniem najbardziej aktualnych potrzeby firmy – wyjaśnia Philip Miller, starszy menedżer ds. marketingu produktów AI w Progress, dostawcy rozwiązań do tworzenia aplikacji biznesowych, wdrażania ich i zarządzania nimi.– Co więcej, podejście to nie wyklucza otrzymania większych, długoterminowych efektów. Z czasem nawet niewielkie zmiany mogą doprowadzić do znaczących korzyści, takich jak obniżenie firmowych kosztów czy ogólna poprawa jakości produktu. Nie chodzi więc o całkowite odrzucenie idei długoterminowych korzyści, ale o zrozumienie, że ścieżka do ich osiągnięcia może być nieliniowa oraz wymaga zwinnej, adaptacyjnej strategii – dodaje ekspert Progress.Ślepy zaułek cyfryzacjiPrzedsiębiorstwa, wdrażając jakąkolwiek nowe rozwiązania, mają w zwyczaju spodziewać się dużych korzyści. Ze względu na ten fakt planują wieloletnie i wieloetapowe procesy ich implementacji, obejmujące wielu interesariuszy. Rozwiązanie to nie sprawdzi w kontekście AI. Paradoksalnie, może ono znacznie ograniczyć korzyści, którymi mogłaby cieszyć się firma przyjmując metodykę zwinną. Innymi słowy, zbyt skomplikowane, statyczne plany wdrożeniowe mogą sprawić, że przedsiębiorstwo wpadnie w tzw. ślepy zaułek cyfryzacji. Firma znajdująca się w tej sytuacji doświadcza zastoju w procesie wprowadzania innowacji, ponieważ jej projekty stają się przestarzałe jeszcze przed ich ukończeniem. Z tego powodu, traci ona swoją konkurencyjność na korzyść innych podmiotów, które potrafią szybko adaptować się do technicznych zmian. W ostatecznym rozrachunku wszystkie tego typu inwestycje podejmowane przez znajdujące się w ślepym zaułku przedsiębiorstwo, skutkują stratami zasobów, ponieważ nie przynoszą oczekiwanych wyników. Jest to efekt braku zrozumienia sposobu działania wdrażanych rozwiązań – w tym wypadku, dynamicznej i nieprzewidywalnej generatywnej sztucznej inteligencji.6 zasad efektywnego wdrażania AI w firmiePlanując wdrożenie generatywnej sztucznej inteligencji w przedsiębiorstwie, ekspert Progress zaleca:Zacząć od małych projektów – Za priorytet należy uznać kwestie, których rozwiązanie, za pośrednictwem implementacji AI, możliwe będzie w ciągu kilku tygodni lub miesięcy. Nie należy koncentrować się zaś na projektach potencjalnie wieloletnich.Postawienie na metodykę zwinną – Elastyczność zapewniana przez to podejście jest kluczowa w kontekście wdrażania generatywnej sztucznej inteligencji. Na przykład, jeśli początkowo wybrany model GenAI nie dostarcza właściwych odpowiedzi lub halucynuje, częste retrospekcje pozwolą na szybkie wykrycie i zbadanie tego problemu.Używanie więcej niż jednego modelu generatywnej sztucznej inteligencji – Mechanizmy te szybko ewoluują. Warto więc mieć możliwość porównania możliwości rożnych modeli.Przygotowanie firmowego stosu technicznego pod Gen AI – Musi on być zdolny do ewoluowania wraz z generatywną sztuczną inteligencją. Na przykład, platforma zarządzania danymi, za pośrednictwem której firma będzie udostępniać zasoby AI, musi być skalowalna, bezpieczna i elastyczna.„Zapoznanie” generatywnej sztucznej inteligencji z firmowymi danymi – Publicznie dostępne modele Gen AI nie są szkolone na podstawie zastrzeżonych, prywatnych zasobów przedsiębiorstwa. W interesie firmy jest znalezienie sposobu na bezpieczne dostarczenie swoich danych mechanizmom generatywnej sztucznej inteligencji, aby mogła ona zapewniać dokładniejsze odpowiedzi na kierowane do niej zapytania. W tym celu przydatna okaże się technika RAG (generowanie przez Gen AI treści wzbogacone o źródła).Upewnienie się, że dostarczane Gen AI dane są wysokiej jakości – Nawet najlepszy model generatywnej sztucznej inteligencji nie będzie dostarczał zadowalających wyników, jeśli zostanie wyposażony w zaszumione, źle wyselekcjonowane zasoby. Kluczowe jest posiadanie platformy zarządzania danymi, która może modelować treści oraz dostosowywać je do konkretnych aplikacji.Wskazówki te stanowią solidny punkt wyjścia dla procesu wdrażania generatywnej sztucznej inteligencji w firmie.[1] McKinsey & Company, What is generative AI?